
Noritake	itron	GU‐7000	Code	Library

Document	Number: E‐M‐0127‐00

Issue	Date: 08/20/2012

Noritake	Co.,	Inc.

Electronics	Division	Headquarter

2635	Clearbrook	Drive

Arlington	Heights,	IL	60005

Toll	free:	(800)	779	‐ 5846

Phone:	(847)	439	‐ 9020

support.ele@noritake.com

www.noritake‐elec.com

East	Coast

New	Jersey	Branch

15‐22	Fair	Lawn	Ave.

Fair	Lawn,	NJ	07410

Toll	free:	(888)	296	‐ 3423

Phone:	(201)	475	‐ 5200

Fax:	(201)	796	‐ 2269	

Midwest,	Canada,	and	Mexico

Chicago	Branch

2635	Clearbrook	Dr.

Arlington	Heights,	IL	60005

Toll	free:	(800)	779	‐ 5846

Phone:	(847)	439	‐ 9020

Fax:	(847)	593	‐ 2285	

West	Coast

Los	Angeles	Branch

21081	S.	Western	Ave.	Ste	180

Torrance,	CA	90501

Toll	free:	(888)	795	‐ 3423

Phone:	(310)	320	‐ 1700

Fax:	(310)	320	‐ 2900	

You	must	agree	this	terms	and	conditions.	This	software	is	provided	by	Noritake	Co.,	Inc	"AS	IS"	and	any	express	or	implied	warranties,	including,	but	not	

limited	to,	the	implied	warranties	of	merchantability	and	fitness	for	a	particular	purpose	are	disclaimed.	In	no	event	shall	the	copyright	owner	or	contributors	

be	liable	for	any	direct,	indirect,	incidental,	special,	exemplary,	or	consequential	damages	(including,	but	not	limited	to,	procurement	of	substitute	goods	or	

services;	loss	of	use,	data,	or	profits;	or	business	interruption)	however	caused	and	on	any	theory	of	liability,	whether	in	contract,	strict	liability,	or	sort	

(including	negligence	or	otherwise)	arising	in	any	way	out	of	the	use	of	this	software,	even	if	advised	of	the	possibility	of	such	damage.	

If	this	document	is	distributed	with	software	that	includes	an	end	user	agreement,	this	document,	as	well	as	the	software	described	in	it,	is	furnished	under	

license	and	may	be	used	or	copied	only	in	accordance	with	the	terms	of	such	license.	Except	as	permitted	by	any	such	license,	no	part	of	this	document	may	be	

reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any	means,	electronic,	mechanical,	recording,	or	otherwise,	without	the	prior	

written	permission	of	Noritake	Co.,	Inc.	Please	note	that	the	content	in	this	document	is	protected	under	copyright	law	even	if	it	is	not	distributed	with	

software	that	includes	an	end	user	license	agreement.	

The	content	of	this	document	is	furnished	for	informational	use	only,	is	subject	to	change	without	notice,	and	should	not	be	construed	as	a	commitment	by	

Noritake	Co.,	Inc.	Noritake	Co.,	Inc.	assumes	no	responsibility	or	liability	for	any	errors	or	inaccuracies	that	may	appear	in	the	informational	content	contained	

in	this	document.	

Any	references	to	company	names	in	sample	codes	are	for	demonstration	purposes	only	and	are	not	intended	to	refer	to	any	actual	organization.	

Noritake	and	Itron	are	either	registered	trademarks	or	trademarks	of	Noritake	Co.,	Inc.	in	the	United	States	and/or	other	countries.	

©	2012	Noritake	Co.,	Inc.	All	rights	reserved	

Noritake	Co.,	Inc.,	2635	Clearbrook	Drive,	Arlington	Heights,	IL	60005,	USA.	

Contents

• Using	the	Library

◦ About	the	Library

◦ Installation

◦ Configuration

■ Mandatory	Options

■ Asynchronous	Serial	Interface	for	Atmel®	AVR

■ Synchronous	Serial	Interface	for	Atmel®	AVR

■ Parallel	Interface	for	Atmel®	AVR

■ Linux	Serial	Device	Interface

• Type	and	Method	Reference

Using	the	Library

About	the	Library

This	library	provides	access	to	the	base	functionality	of	the	GU‐7000	series	

modules	using	8‐bit	Atmel®	AVR	or	Linux.	

This	library	is	intended	for	use	with	the	following	modules:	

GU***X***‐7***	

Example:	

• GU140X32F‐7000	

• GU140X16G‐7003	

• GU160X80E‐7900B	

Installation

1. Download	the	

code	library	.	

2. Unzip	the	

library	file	to	

your	work	area.	

3. Extract	the	

demo	folder	

into	the	folder	

for	the	code	

library.	

4. Set	the	

configuration	

options	in	

config.h	

included	with	

the	code	library.	

See	the	

Configuration

section.	

5. Open	the	

Demo.aps

project	file	with	

AVR	Studio	4

or	Demo.atsln in	

Atmel	Studio	6

or	build	

Makefile on	

Linux.	

Configuration

The	library	is	configured	by	setting	preprocessor	values	in	the	config.h file	in	the	src

directory	of	the	library.	The	configuration	options	in	the	code	library's	config.h

must	match	the	host	system's	hardware	setup.	

The	library	is	designed	so	that	all	of	its	source	files	are	compiled	even	if	they	are	

not	used.	For	example,	when	set	up	to	use	the	parallel	interface,	the	serial	interface	

files	will	automatically	disable	themselves	based	on	the	options	set	in	config.h.	

Mandatory	Options

There	are	a	few	mandatory	options	that	must	be	set	regardless	of	the	

hardware	setup.	

Name Description Example

F_CPU

CPU	frequency	in	Hertz.	

This	is	only	used	for	Atmel®	AVR.	

16000000UL	

for	16MHz

NORITAKE_VFD_RESET_DELAY

The	delay	time	in	milliseconds	before	
beginning	communication	with	the	module.	

This	allows	the	VFD	module	to	start	up	as	

well	as	avoids	program	restarts	due	to	in‐
circuit	debuggers.	

This	value	will	vary	depend	on	the	power	

supply	and	hardware	setup.	500ms	is	

generally	sufficient	

500	for	500ms

NORITAKE_VFD_HEIGHT

Height	of	the	display	in	characters.	This	
number	is	given	after	the	“CU”	in	the	model	

number:	CU__***-Y***

24	for	CU24043

‐Y1A

NORITAKE_VFD_WIDTH

Width	of	the	display	in	characters.	This	
number	is	given	two	digits	after	the	first	two	

digits	after	the	“CU”	in	the	model	number:	

CU**__*-Y***

04	for	CU24043

‐Y1A

NORITAKE_VFD_MODEL_CLASS

Indicates	the	capabilities	of	the	module.	The	

model	class	number	is	the	last	4‐digit	
number	in	the	model	number:	GU***X****-____

7040	for	
GU140X16G‐

7040A;

7903	for	
GU140X16G‐

7903	

NORITAKE_VFD_GENERATION

Indicates	the	generation	of	the	module.	If	the	
last	letter	in	the	model	number	is	B,	the	

generation	is	'B'.	Otherwise,	0.	

0	for	

GU140X16G‐
7003;

0	for	
GU140X16G‐

7040A;
'B'	for	

GU140X16G‐

7003B;

Asynchronous	Serial	Interface	for	Atmel®	AVR

Name Description Example

NORITAKE_VFD_INTERFACE 0	for	serial	interface

NORITAKE_VFD_SERIAL_SYNC 0	for	asynchronous	serial

NORITAKE_VFD_RS232
Determines	the	interface	

protocol.

0	for	models	that	end	in	7003;

1	for	models	that	do	not	end	in	
7003	

NORITAKE_VFD_BAUD
The	baud	rate	of	the	

device.
38400	for	38400bps

Name Description Example

OUT_PORT	&	OUT_PIN
The	serial	data	SIN	port	
and	pin.

OUT_PORT	=	PORTA	and	OUT_PIN	
=	1	for	PA1

BUSY_PORT	&	BUSY_PIN
The	serial	SBUSY	port	and	

pin.

BUSY_PORT	=	PORTA	and	

BUSY_PIN	=	1	for	PA1

RESET_PORT	&	RESET_PIN
The	serial	RESET	port	and	

pin.

RESET_PORT	=	PORTA	and	

RESET_PIN	=	1	for	PA1

Synchronous	Serial	Interface	for	Atmel®	AVR

Name Description Example

NORITAKE_VFD_INTERFACE 0	for	serial	interface

NORITAKE_VFD_SERIAL_SYNC 1	for	synchronous	serial

SCK_PORT	&	SCK_PIN
The	serial	data	SCK	port	
and	pin.

SCK_PORT	=	PORTA	and	SCK_PIN	=	1	
for	PA1

OUT_PORT	&	OUT_PIN
The	serial	data	SIN	port	

and	pin.

OUT_PORT	=	PORTA	and	OUT_PIN	=	

1	for	PA1

BUSY_PORT	&	BUSY_PIN
The	serial	SBUSY	port	

and	pin.

BUSY_PORT	=	PORTA	and	BUSY_PIN	

=	1	for	PA1

RESET_PORT	&	RESET_PIN
The	serial	RESET	port	

and	pin.

RESET_PORT	=	PORTA	and	

RESET_PIN	=	1	for	PA1

Parallel	Interface	for	Atmel®	AVR

Name Description Example

NORITAKE_VFD_INTERFACE 1	for	parallel	interface

NORITAKE_VFD_BUSY_CONNECTED

Indicates	that	PBUSY	is	connected	on	

parallel	pin	3.	

This	cannot	be	set	at	the	same	time	as	

NORITAKE_VFD_RESET_CONNECTED.	

Check	the	module	specification	for	

jumper	settings	or	this	option.	

0	if	PBUSY	is	
shared	with	

D7

1	if	PBUSY	is	
connected	to	

parallel	pin	3	

NORITAKE_VFD_RESET_CONNECTED

Indicates	that	/RESET	is	connected	on	
parallel	pin	3.	

This	cannot	be	set	at	the	same	time	as	
NORITAKE_VFD_BUSY_CONNECTED.	

Check	the	module	specification	for	

jumper	settings	or	this	option.	

0	if	/RESET	is	

not	connected
1	if	/RESET	is	

connected	to	
parallel	pin	3	

Name Description Example

WR_PORT	&	WR_PIN The	WR	signal	port	and	pin.

WR_PORT	=	

PORTA	and	
WR_PIN	=	1	

for	PA1

BUSY_PORT	&	BUSY_PIN The	PBUSY	signal	port	and	pin.

BUSY_PORT	=	

PORTA	and	
BUSY_PIN	=	1	

for	PA1

D0_PORT	&	D0_PIN The	D0	signal	port	and	pin.

D0_PORT	=	

PORTA	and	
D0_PIN	=	1	for	

PA1

D1_PORT	&	D1_PIN The	D1	signal	port	and	pin.

D1_PORT	=	

PORTA	and	
D1_PIN	=	1	for	

PA1

D2_PORT	&	D2_PIN The	D2	signal	port	and	pin.

D2_PORT	=	

PORTA	and	
D2_PIN	=	1	for	

PA1

D3_PORT	&	D3_PIN The	D3	signal	port	and	pin.

D3_PORT	=	

PORTA	and	
D3_PIN	=	1	for	

PA1

D4_PORT	&	D4_PIN The	D4	signal	port	and	pin.

D4_PORT	=	

PORTA	and	

D4_PIN	=	1	for	
PA1

D5_PORT	&	D5_PIN The	D5	signal	port	and	pin.

D5_PORT	=	

PORTA	and	

D5_PIN	=	1	for	
PA1

D6_PORT	&	D6_PIN The	D6	signal	port	and	pin.

D6_PORT	=	

PORTA	and	

D6_PIN	=	1	for	
PA1

D7_PORT	&	D7_PIN The	D7	signal	port	and	pin.

D7_PORT	=	
PORTA	and	

D7_PIN	=	1	for	
PA1

Linux	Serial	Device	Interface

The	Linux	serial	device	interface	uses	Linux	character	device	files	to	interface	with	

the	module.	

Make	sure	logged	in	user	has	read	and	write	access	to	the	device	file	before	

using	the	library.

You	can	give	non‐root	users	access	to	the	device	file	with:	

chmod o+rw /dev/ttyUSB0

You	must	be	root	or	running	with	elevated	privilige	through	sudo or	su to	run	this	

command.	

Name Description Example

Name Description Example

Name Description Example

NORITAKE_VFD_INTERFACE 1	for	Linux	serial	device	serial	interface

NORITAKE_VFD_FILE
The	path	to	the	device	file	connected	to	the	

module.
/dev/ttyUSB0

NORITAKE_VFD_BAUD The	baud	rate	of	the	device.
38400	for	
38400bps

Type	and	Method	Reference

Index

• Types

◦ ImageMemoryArea
◦ ScrollMode

◦ CompositionMode

◦ FontFormat
◦ AsciiVariant

◦ Charset

◦ MultibyteCharset

◦ ScreenSaver
• Printing	Methods

◦ void	print(char	c);

◦ void	print(const	char	*str);
◦ void	print(const	char	*buffer,	size_t	size);

◦ void	print(int	number,	uint8_t	base);

◦ void	print(unsigned	number,	uint8_t	base);
◦ void	print(long	number,	uint8_t	base);

◦ void	print(unsigned	long	number,	uint8_t	base);

◦ void	print(unsigned	x,	uint8_t	y,	char	c);

◦ void	print(unsigned	x,	uint8_t	y,	const	char	*str);
◦ void	print(unsigned	x,	uint8_t	y,	const	char	*buffer,	uint8_t	len);

◦ void	print(unsigned	x,	uint8_t	y,	int	number,	uint8_t	base);

◦ void	print(unsigned	x,	uint8_t	y,	unsigned	number,	uint8_t	base);

◦ void	print_p(const	char	*str);
◦ void	print_p(unsigned	x,	uint8_t	y,	const	char	*str);

◦ void	print_p(unsigned	x,	uint8_t	y,	const	char	*buffer,	uint8_t	len);

◦ void	println(char	c);
◦ void	println(const	char	*str);

◦ void	println(const	char	*buffer,	size_t	size);

◦ void	println(int	number,	uint8_t	base);

◦ void	println(unsigned	number,	uint8_t	base);
◦ void	println(long	number,	uint8_t	base);

◦ void	println(unsigned	long	number,	uint8_t	base);

• Character­Based
◦ void	GU7000_back();

◦ void	GU7000_forward();

◦ void	GU7000_lineFeed();
◦ void	GU7000_home();

◦ void	GU7000_carriageReturn();

◦ void	GU7000_setCursor(unsigned	x,	unsigned	y);

◦ void	GU7000_cursorOn();
◦ void	GU7000_cursorOff();

• Module	Control

◦ void	GU7000_clearScreen();
◦ void	GU7000_init();

◦ void	GU7000_reset();

◦ void	GU7000_setScreenBrightness(unsigned	level);
◦ void	GU7000_wait(uint8_t	time);

◦ void	GU7000_displayOn();

◦ void	GU7000_displayOff();

◦ void	GU7000_screenSaver(ScreenSaver	mode);
• Fonts

◦ void	GU7000_setFontStyle(bool	proportional,	bool	evenSpacing);

◦ void	GU7000_setFontSize(uint8_t	x,	uint8_t	y,	bool	tall);
◦ void	GU7000_useCustomChars(bool	enable);

◦ void	GU7000_defineCustomChar(uint8_t	code,	FontFormat	format,	const	uint8_t	*data);

◦ void	GU7000_deleteCustomChar(uint8_t	code,	FontFormat	format);
• Encoding

◦ void	GU7000_useMultibyteChars(bool	enable);

◦ void	GU7000_setMultibyteCharset(uint8_t	code);
◦ void	GU7000_setAsciiVariant(AsciiVariant	code);

◦ void	GU7000_setCharset(Charset	code);

• Screen	Effects
◦ void	GU7000_invertOn();

◦ void	GU7000_invertOff();

◦ void	GU7000_setCompositionMode(CompositionMode	mode);

◦ void	GU7000_setScrollMode(ScrollMode	mode);
◦ void	GU7000_setHorizScrollSpeed(uint8_t	speed);

◦ void	GU7000_scrollScreen(unsigned	x,	unsigned	y,	unsigned	count,	uint8_t	speed);

◦ void	GU7000_blinkScreen();
◦ void	GU7000_blinkScreen(bool	enable,	bool	reverse,	uint8_t	on,	uint8_t	off,	uint8_t	

times);

• Drawing
◦ void	GU7000_drawImage(unsigned	width,	uint8_t	height,	const	uint8_t	*data);

◦ void	GU7000_drawImage_p(unsigned	width,	uint8_t	height,	const	uint8_t	*data);

◦ void	GU7000_drawFROMImage(unsigned	long	address,	uint8_t	srcHeight,	unsigned	
width,	uint8_t	height);

◦ void	GU7000_drawImage(unsigned	x,	uint8_t	y,	ImageMemoryArea	area,	unsigned	long	

address,	uint8_t	srcHeight,	unsigned	width,	uint8_t	height,	unsigned	offsetx,	
unsigned	offsety);

◦ void	GU7000_drawImage(unsigned	x,	uint8_t	y,	ImageMemoryArea	area,	unsigned	long	

address,	unsigned	width,	uint8_t	height);
◦ void	GU7000_drawImage_p(unsigned	x,	uint8_t	y,	unsigned	width,	uint8_t	height,	const	

uint8_t	*data);
◦ void	GU7000_drawImage(unsigned	x,	uint8_t	y,	unsigned	width,	uint8_t	height,	const	

uint8_t	*data);

◦ void	GU7000_fillRect(unsigned	x0,	unsigned	y0,	unsigned	x1,	unsigned	y1,	bool	on);
• Window	and	Screen

◦ void	GU7000_selectWindow(uint8_t	window);

◦ void	GU7000_defineWindow(uint8_t	window,	unsigned	x,	unsigned	y,	unsigned	width,	
unsigned	height);

◦ void	GU7000_deleteWindow(uint8_t	window);

◦ void	GU7000_joinScreens();
◦ void	GU7000_separateScreens();

• LED	Backlight	Control

◦ void	GU7000_setBacklightColor(uint8_t	r,	uint8_t	g,	uint8_t	b);
◦ void	GU7000_setBacklightColor(unsigned	rgb);

Types

ImageMemoryArea

Identifies	the	memory	area	to	use	in	an	operation.	

Users

• GU7000_drawImage(ImageMemoryArea	area,	unsigned	long	address,	

uint8_t	srcHeight,	unsigned	width,	uint8_t	height)

• GU7000_drawImage(unsigned	x,	uint8_t	y,	ImageMemoryArea	area,	

unsigned	long	address,	uint8_t	srcHeight,	unsigned	width,	uint8_t	height,	

unsigned	offsetx,	unsigned	offsety)

• GU7000_drawImage(unsigned	x,	uint8_t	y,	ImageMemoryArea	area,	

unsigned	long	address,	unsigned	width,	uint8_t	height)

• GU7000_defineImage(ImageMemoryArea	area,	unsigned	addr,	unsigned	

width,	uint8_t	height,	const	uint8_t	*data)

• GU7000_defineImage_p(ImageMemoryArea	area,	unsigned	addr,	

unsigned	width,	uint8_t	height,	const	uint8_t	*data)

Only	GU­79**	modules	

have	the	Flash	ROM	
image	memory	area.

GU7000_lineFeed()	is	
ignored	in	this	mode.

• GU7000_scrollImage(ImageMemoryArea	area,	unsigned	long	address,	

uint8_t	srcHeight,	unsigned	width,	uint8_t	height,	uint8_t	speed)

Parameters

FlashImageArea 1:	FlashROM	on	the	module;	contents	until	it	is	overwritten

ScreenImageArea 2:	reflects	the	contents	of	the	screen

ScrollMode

Identifies	scrolling	and	wrapping	behavior.	

Users

• GU7000_setScrollMode(ScrollMode	mode)

Parameters

WrappingMode
1:	When	the	cursor	reaches	the	right	end	of	the	screen,	the	cursor	moves	
to	the	left	end	of	the	next	line.	If	on	the	last	line,	the	cursor	moves	to	the	

home	position	(0,	0).

VertScrollMode

2:	When	the	cursor	reaches	the	right	end	of	the	screen,	the	cursor	moves	

to	the	left	end	of	the	next	line.	If	on	the	last	line,	the	screen	is	moved	up	by	
8	dots.	The	bottom	8	dots	are	cleared.	The	top	8	dots	are	lost.

HorizScrollMode
3: When	the	cursor	reaches	the	right	end	of	the	screen,	the	current	line	is	
shifted	left	by	the	size	of	one	character.	The	space	to	the	right	is	cleared.	

The	cursor	is	not	moved.

CompositionMode

Identifies	the	way	that	new	images	and	text	are	combined	with	the	contents	

that	are	already	on	the	screen.	

Users

• GU7000_setCompositionMode(CompositionMode	mode)

Parameters

NormalCompositionMode 0:	screen	image	is	cleared	and	the	source	appears	exactly

OrCompositionMode 1:	dots	are	lit	if	either	the	source	or	screen	image	specify	it	lit

AndCompositionMode
2:	dots	are	lit	only	if	both	the	source	and	screen	image	specify	it	

lit

XorCompositionMode
2:	dots	are	lit	only	if	either	the	source	or	screen	image	specify	it	

lit	but	not	both

FontFormat

Identifies	the	size	and	data	format	

Users

• GU7000_setFontSize(FontFormat	format,	uint8_t	x,	uint8_t	y)

• GU7000_defineCustomChar(uint8_t	code,	FontFormat	format,	const	

uint8_t	*data)

• GU7000_deleteCustomChar(uint8_t	code,	FontFormat	format)

Parameters

GU70005x7Format 1:	5×7	font

GU70007x8Format 1:	5×7	font

CUUFormat
0x81:	5×8	font.	This	format	is	only	for	defining	6×8	custom	characters	

in	a	different	format;	it	does	not	exist	on	the	module,	itself

AsciiVariant

Identifies	national	ASCII	variants.	

Users

• GU7000_setAsciiVariant(AsciiVariant	code)

Parameters

AmericaAscii 0

FranceAscii 1

GermanyAscii 2

EnglandAscii 3

Denmark1Ascii 4

SweedenAscii 5

ItalyAscii 6

Spain1Ascii 7

JapanAscii 8

NorwayAscii 9

Denmark2Ascii 10

Spain2Ascii 11

LatinAmericaAscii 12

KoreaAscii 13

Charset

Identifies	code	page.	

Users

• GU7000_setCharset(Charset	code)

Parameters

CP437 0

EuroStdCharset 0:	CP437

Katakana 1

CP850 2

MultilingualCharset 2:	CP850

CP860 3

PortugeseCharset 3:	CP860

CP863 4

CanadianFrenchCharset 4:	CP863

CP865 5

NordicCharset 5:	CP865

CP1252 0x10

CP866 0x11

Cyrillic2Charset 0x11:	CP866

CP852 0x12

Latin2Charset 0x12:	CP852

CP858 0x13

MultibyteCharset

Identifies	a	multibyte	character	set.	

Users

• GU7000_setMultibyteCharset(uint8_t	code)

Parameters

ShiftJIS 0:	JIS	(X0208	Shift­JIS)

JapaneseMBCS 0:	ShiftJIS

KSC5601 1:	KSC5601­87

KoreanMBCS 1:	KSC5601

GB2312 2:	GB2312­80

SimplifiedChineseMBCS 2:	GB2312

Big5 3:	Big5

TraditionalChineseMBCS 3:	Big5

ScreenSaver

Screen	saver.	

Users

• GU7000_screenSaver()

Parameters

AllDotsOffSaver turns	all	dots	off

AllDotsOnSaver turns	all	dots	on

InvertSaver

Printing	Methods

See	
GU7000_setScrollMode

(ScrollMode	mode) for	

information	on	
scrolling	and	

wrapping.

Arithmetic	with	a	long,	

unsigned,	or	constant	
larger	than	INT_MAX	

will	cause	the	long,	
unsigned,	or	unsigned	

long	overload	of	this	
function	to	be	used.

Arithmetic	with	a	long	

or	constant	larger	
than	UINT_MAX	will	

cause	the	long	or	

unsigned	long	
overload	of	this	

function	to	be	used.

void	print(char	c);

Print	a	character.	

Parameters

c character	to	print

void	print(const	char	*str);

Print	a	string.	

Each	character	is	printed	with	print(char	c).	

Parameters

str string	to	print

void	print(const	char	*buffer,	size_t	size);

Print	a	buffer	of	the	given	size.	

Each	character	is	printed	with	print(char	c).	

Parameters

buffer characters	to	print

size number	of	characters	to	print

void	print(int	number,	uint8_t	base);

Print	a	number	in	the	given	base.	

Each	character	is	printed	with	print(char	c).	

No	leading	space	or	zeros	are	used.	

Parameters

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

void	print(unsigned	number,	uint8_t	base);

Print	a	number	in	the	given	base.	

No	leading	space	or	zeros	are	used.	

Each	character	is	printed	with	print(char	c).	

Parameters

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

Arithmetic	with	an	
unsigned	long	or	

constant	larger	than	
LONG_MAX	will	cause	

the	unsigned	long	

overload	of	this	
function	to	be	used.

Normal	commands	
cannot	be	issued	

inside	this	command.
This	command	is	only	

available	on	
Generation	B.

No	more	than	255	
characters	can	be	

printed	at	once.

This	command	is	only	
available	on	

Generation	B.
See	print(unsigned	x,	

uint8_t	y,	char	c) for	
additional	

information.

void	print(long	number,	uint8_t	base);

Print	a	number	in	the	given	base.	

No	leading	space	or	zeros	are	used.	

Each	character	is	printed	with	print(char	c).	

Parameters

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

void	print(unsigned	long	number,	uint8_t	base);

Print	a	number	in	the	given	base.	

No	leading	space	or	zeros	are	used.	

Each	character	is	printed	with	print(char	c).	

Parameters

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

void	print(unsigned	x,	uint8_t	y,	char	c);

Print	a	character	from	(x,	y).	

The	cursor	is	not	moved.	

Characters	can	be	inverted	for	the	duration	of	the	command	by	sending	

character	'\x11'	and	disabled	by	'\x10'.	Inverting	from	GU7000_invertOn()

affects	the	characters	printed	with	this	command	and	can	be	disabled	with	

'\x10'.	

Parameters

x x	coordinate	of	top­left	corner;	­1	continues	from	the	last	unaligned	print

y y	coordinate	of	top­left	corner

c
character	to	print	
0x10	disables	inverted	characters	

0x11	enables	inverted	characters

void	print(unsigned	x,	uint8_t	y,	const	char	*str);

Print	a	string	from	(x,	y).	

Parameters

x x	coordinate	of	top­left	corner;	­1	continues	from	the	last	unaligned	print

y y	coordinate	of	top­left	corner

str string	to	print

No	more	than	255	
characters	can	be	

printed	at	once.
This	command	is	only	

available	on	

Generation	B.
See	print(unsigned	x,	

uint8_t	y,	char	c) for	
additional	

information.

Note	that	there	are	no	

long	int	overloads.
This	command	is	only	

available	on	
Generation	B.

Note	that	there	are	no	

long	int	overloads.
This	command	is	only	

available	on	
Generation	B.

No	more	than	255	

characters	can	be	

printed	at	once.

No	more	than	255	
characters	can	be	

printed	at	once.
This	command	is	only	

available	on	
Generation	B.

void	print(unsigned	x,	uint8_t	y,	const	char	*buffer,	uint8_t	len);

Print	a	buffer	from	(x,	y).	

Parameters

x x	coordinate	of	top­left	corner;	­1	continues	from	the	last	unaligned	print

y y	coordinate	of	top­left	corner

buffer characters	to	print

len number	of	characters	to	print

void	print(unsigned	x,	uint8_t	y,	int	number,	uint8_t	base);

Print	a	number	from	(x,	y).	

Parameters

x x	coordinate	of	top­left	corner;	­1	continues	from	the	last	unaligned	print

y y	coordinate	of	top­left	corner

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

void	print(unsigned	x,	uint8_t	y,	unsigned	number,	uint8_t	base);

Print	a	number	from	(x,	y).	

Parameters

x x	coordinate	of	top­left	corner;	­1	continues	from	the	last	unaligned	print

y y	coordinate	of	top­left	corner

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

void	print_p(const	char	*str);

Print	a	string	from	host's	ROM.	

Parameters

str string	to	print

void	print_p(unsigned	x,	uint8_t	y,	const	char	*str);

Print	a	string	from	(x,	y)	from	the	host's	ROM.	

Parameters

x x	coordinate	of	top­left	corner;	­1	continues	from	the	last	unaligned	print

y y	coordinate	of	top­left	corner

This	command	is	only	

available	on	

Generation	B.

Arithmetic	with	a	long,	
unsigned,	or	constant	

larger	than	INT_MAX	
will	cause	the	long,	

unsigned,	or	unsigned	
long	overload	of	this	

function	to	be	used.

str string	to	print

void	print_p(unsigned	x,	uint8_t	y,	const	char	*buffer,	uint8_t	len);

Print	a	buffer	from	(x,	y)	from	the	host's	ROM.	

Parameters

x x	coordinate	of	top­left	corner;	­1	continues	from	the	last	unaligned	print

y y	coordinate	of	top­left	corner

str characters	to	print

len number	of	characters	to	print

void	println(char	c);

Print	a	character	and	go	to	the	next	line	as	if	GU7000_carriageReturn() and	

GU7000_lineFeed() were	called.	

Parameters

c character	to	print

void	println(const	char	*str);

Print	a	string	and	go	to	the	next	line	as	if	GU7000_carriageReturn() and	

GU7000_lineFeed() were	called.	

Parameters

str string	to	print

void	println(const	char	*buffer,	size_t	size);

Print	a	buffer	of	the	given	size	and	go	to	the	next	line	as	if	

GU7000_carriageReturn() and	GU7000_lineFeed() were	called.	

Parameters

buffer characters	to	print

size number	of	characters	to	print

void	println(int	number,	uint8_t	base);

Print	a	number	in	the	given	base	and	go	to	the	next	line	as	if	

GU7000_carriageReturn() and	GU7000_lineFeed() were	called.	

No	leading	space	or	zeros	are	used.	

Each	character	is	printed	with	print(char	c).	

Parameters

number number	to	print

Arithmetic	with	a	long	

or	constant	larger	

than	UINT_MAX	will	
cause	the	long	or	

unsigned	long	
overload	of	this	

function	to	be	used.

Arithmetic	with	an	

unsigned	long	or	
constant	larger	than	

LONG_MAX	will	cause	
the	unsigned	long	

overload	of	this	

function	to	be	used.

base base	to	print	in:	2	≤	base	≤	36

void	println(unsigned	number,	uint8_t	base);

Print	a	number	in	the	given	base.	

No	leading	space	or	zeros	are	used	and	go	to	the	next	line	as	if	

GU7000_carriageReturn() and	GU7000_lineFeed() were	called.	

Each	character	is	printed	with	print(char	c).	

Parameters

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

void	println(long	number,	uint8_t	base);

Print	a	number	in	the	given	base	and	go	to	the	next	line	as	if	

GU7000_carriageReturn() and	GU7000_lineFeed() were	called.	

No	leading	space	or	zeros	are	used.	

Each	character	is	printed	with	print(char	c).	

Parameters

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

void	println(unsigned	long	number,	uint8_t	base);

Print	a	number	in	the	given	base	and	go	to	the	next	line	as	if	

GU7000_carriageReturn() and	GU7000_lineFeed() were	called.	

No	leading	space	or	zeros	are	used.	

Each	character	is	printed	with	print(char	c).	

Parameters

number number	to	print

base base	to	print	in:	2	≤	base	≤	36

Character­Based

void	GU7000_back();

Move	the	cursor	back	one	character	position	in	the	current	font.	

If	the	cursor	is	within	one	character	position	of	the	left	of	the	screen,	the	cursor	

moves	to	the	last	character	position	of	the	previous	line.	If	on	the	first	line	

when	this	happens,	the	cursor	does	not	move.	

This	command	is	
ignored	in	horizontal	
scrolling	modes.

void	GU7000_forward();

Move	the	cursor	forward	one	character	position	in	the	current	font.	

If	the	cursor	is	within	one	character	position	of	the	right	of	the	screen,	the	
cursor	moves	to	the	first	character	position	of	the	next	line.	If	on	the	last	line	
when	this	happens,	the	cursor	moves	to	the	home	position	(0,	0).	

void	GU7000_lineFeed();

Move	the	cursor	down	one	line.	

If	the	cursor	is	on	the	last	line,	then	the	cursor	is	moved	to	the	home	position	
(0,	0).	

void	GU7000_home();

Move	the	cursor	to	the	home	position	(0,	0).	

void	GU7000_carriageReturn();

Move	the	cursor	to	the	beginning	of	the	current	line.	

void	GU7000_setCursor(unsigned	x,	unsigned	y);

Set	cursor	to	the	given	postion.	

If	the	position	is	invalid,	the	command	is	ignored.	

This	command	may	be	used	to	set	the	cursor	into	the	hidden	memory	area.	

Parameters

x target	x	coordinate

y target	y	coordinate

void	GU7000_cursorOn();

Turn	the	cursor	on.	

void	GU7000_cursorOff();

Turn	the	cursor	off.	

Module	Control

void	GU7000_clearScreen();

Clear	the	screen	and	move	the	cursor	to	the	home	position	(0,	0)	of	the	current	
screen.	

If	in	separate	screen	mode,	only	one	of	the	two	screens	is	cleared.	If	in	the	
hidden	memory	area,	the	cursor	returns	to	(0,	0)	of	the	hidden	memory	area	
not	of	the	visible	screen.	

void	GU7000_init();

Initialize	the	module.	

void	GU7000_reset();

Reset	the	module.	

void	GU7000_setScreenBrightness(unsigned	level);

Set	screen	brightness.	

Parameters

level percent	of	capacity	(rounded	to	next	12.5%):	0	≤	level	≤	100

void	GU7000_wait(uint8_t	time);

Stop	processing	commands	for	the	given	time	period.	

Parameters

time time	×	.5s

void	GU7000_displayOn();

Turn	the	display	on.	The	screen	may	fade	on.	

void	GU7000_displayOff();

Turn	the	display	off.	The	screen	may	fade	off.	

Turning	the	display	off	is	saves	more	power	than	simply	turning	all	dots	off	or	
setting	the	brightness	to	0%	with	GU7000_setScreenBrightness(unsigned	
level).	

void	GU7000_screenSaver(ScreenSaver	mode);

Set	screen	saver.	

Screen	savers	are	disabled	if	a	command	is	received.	

Parameters

mode screen	saver	mode;	See	ScreenSaver

Fonts

void	GU7000_setFontStyle(bool	proportional,	bool	evenSpacing);

Set	the	font	style.	

Parameters

Custom	characters	
must	be	enabled	with	
GU7000_useCustomChars
(bool	enable) to	see	
changes.

proportional true	uses	a	proportional	font	false	uses	a	fixed­width	font

evenSpacing true	inserts	an	extra	dot	on	the	right

void	GU7000_setFontSize(uint8_t	x,	uint8_t	y,	bool	tall);

Set	the	magnification	of	the	font.	

Characters	already	on	the	screen	are	not	affected.	

Parameters

x width	magnification:	1	≤	x	≤	4

y height	magnification:	1	≤	y	≤	4

tall
uses	the	8×16	font;	this	is	required	to	enable	multibyte	character	sets;	See	
GU7000_useMultibyteChars(bool	enable)

void	GU7000_useCustomChars(bool	enable);

Enables	or	disables	the	use	of	custom	characters.	

Custom	characters	are	not	deleted	if	this	is	called	with	false;	they	may	be	used	
again	when	custom	characters	are	re­enabled.	

Parameters

enable true	enables	custom	characters;	false	disables	them

void	GU7000_defineCustomChar(uint8_t	code,	FontFormat	format,	const	

uint8_t	*data);

Redefine	the	appearance	of	the	given	character	code.	Redefining	a	character	
does	not	change	the	appearance	of	characters	already	on	screen.	Custom	
characters	may	be	redefined	multiple	times	without	deleting	them.	

Only	16	characters	may	be	defined	per	format.	

Custom	characters	are	destroyed	when	the	module	is	reset	or	the	initialize	
command	is	used.	Delete	characters	with	GU7000_deleteCustomChar(uint8_t	
code,	FontFormat	format).	

Parameters

code

character	code	
0x20	≤	code	≤	0xff	(except	16×16	and	32×32)	
0xec40	≤	code	≤	0xec4f	for	16×16	and	32×32	Japanese	
0xfea1	≤	code	≤	0xfeb0	for	16×16	and	32×32	except	Japanese

format size	and	format	of	data;	see	FontFormat

data display	data;	see	the	module	specification	for	format

void	GU7000_deleteCustomChar(uint8_t	code,	FontFormat	format);

Delete	a	custom	character.	

The	command	is	ignored	if	a	character	was	not	defined.	

Multi­byte	characters	
may	only	be	printed	
when	the	8×16	font	is	
selected.	12×16	may	
be	used	for	Japanese.

Multi­byte	characters	
may	only	be	printed	
when	the	8×16	font	is	
selected.	12×16	may	
be	used	for	Japanese.

Parameters

code

character	code	
0x20	≤	code	≤	0xff	(except	16×16	and	32×32)	
0xec40	≤	code	≤	0xec4f	for	16×16	and	32×32	Japanese	
0xfea1	≤	code	≤	0xfeb0	for	16×16	and	32×32	except	Japanese

format size	and	format	of	data;	see	FontFormat

Encoding

void	GU7000_useMultibyteChars(bool	enable);

Enable	or	disable	the	use	of	multibyte	character	sets.	

Use	GU7000_setMultibyteCharset(uint8_t	code) to	select	the	character	set.	

Multibyte	charactersets	are	only	available	on	GU­79**	modules.	

Parameters

enable true	enables	multibyte	character	sets;	false	disables	them

void	GU7000_setMultibyteCharset(uint8_t	code);

Set	the	multibyte	character	set.	

Use	GU7000_useMultibyteChars(bool	enable) to	enable	multicharacter	sets.	

Multibyte	charactersets	are	only	available	on	GU­79**	modules.	

Parameters

code number	code	for	the	characterset;	see	MultibyteCharset

void	GU7000_setAsciiVariant(AsciiVariant	code);

Select	the	national	ASCII	variant.	

The	appearance	of	these	characters	changes:	

0x23 0x24 0x40 0x5b 0x5c 0x5d 0x5e 0x60 0x7c 0x7d 0x7e

'#' '$' '@' '[' '\' ']' '^' '`' '{' '|' '}'

Characters	already	on	the	screen	are	not	affected.	

Parameters

code ASCII	variant	code;	see	AsciiVariant

void	GU7000_setCharset(Charset	code);

Select	the	character	set	(code	page).	

The	appearance	of	characters	0x80	­ 0xff	changes	according	to	the	table	for	the	
selected	character	set.	

No	commands	are	
processed	while	the	
module	is	scrolling.

No	commands	are	
processed	while	the	
module	is	scrolling.
Timing	differs	per	
module:	13	≤	T ≤	15

Characters	already	on	the	screen	are	not	affected.	

This	only	affects	8­bit	character	sets.	Use	GU7000_setMultibyteCharset(uint8_t	
code) to	change	the	multibyte	character	set.	

Parameters

code Character	set	code;	see	Charset

Screen	Effects

void	GU7000_invertOn();

Turn	inversion	on.	Dots	that	would	have	been	been	lit	will	be	drawn	unlit	and	
vice	versa.	

Text	and	images	already	on	screen	are	not	affected.	

void	GU7000_invertOff();

Turns	inversion	off.	

Text	and	images	already	on	screen	are	not	affected.	

void	GU7000_setCompositionMode(CompositionMode	mode);

Determine	the	way	that	new	images	and	text	are	combined	with	the	contents	
that	are	already	on	the	screen.	

Parameters

mode composition	mode;	see	CompositionMode

void	GU7000_setScrollMode(ScrollMode	mode);

Select	the	behavior	when	text	reaches	the	end	of	the	screen.	

Parameters

mode scroll	mode;	see	ScrollMode

void	GU7000_setHorizScrollSpeed(uint8_t	speed);

Set	the	delay	between	scrolling	animation	steps.	

Parameters

speed
0	prevents	any	delay	between	steps	
1	Tms	/	2	dots	
(n	­ 1)	×	Tms	/	dot

void	GU7000_scrollScreen(unsigned	x,	unsigned	y,	unsigned	count,	uint8_t	

speed);

Scroll	the	contents	of	the	screen	by	(x,	y)	leftwards/upwards.	

No	commands	are	
processed	while	the	

module	is	scrolling.

Timing	differs	per	
module:	13	≤	T ≤	15

Timing	differs	per	
module:	13	≤	T ≤	15

If	height	is	larger	than	

the	screen,	then	the	

call	will	be	ignored.

This	command	only	moves	the	viewing	area.	The	visible	screen	area	is	moved	

left/up	and	the	right	/	bottom	edge	now	appears	in	the	hidden	memory	area.	

The	cursor	remains	in	place.	It	does	not	scroll	with	the	cursor.	

Scrolling	can	be	used	for	page	flipping	if	the	module	has	enough	display	

memory	for	two	full	screens.	Set	the	cursor	into	the	hidden	memory	area	and	

draw	he	next	frame.	When	rendering	is	complete,	scroll	the	width	of	a	screen	

to	exchange	the	hidden	memory	area	with	the	previous	visible	memory	area.	

The	cursor	will	remain	in	the	hidden	memory	area.	

Parameters

x number	of	dots	to	move	left

y number	of	dots	to	move	up	rounded	down	to	the	next	8	dots

count number	of	steps	to	break	animation	into

speed delay	between	each	step;	speed	×	T

void	GU7000_blinkScreen();

Stop	the	screen	from	blinking.	Blink	the	screen	with	GU7000_blinkScreen(bool	

enable,	bool	reverse,	uint8_t	on,	uint8_t	off,	uint8_t	times).	

void	GU7000_blinkScreen(bool	enable,	bool	reverse,	uint8_t	on,	uint8_t	off,	

uint8_t	times);

Enable	or	disable	screen	blinking.	

Parameters

enable true	enables	screen	blinking;	false	disables	it

reverse true	reverses	the	screen	on	'off'	cycles;	false	clears	the	screen

on
time	to	display	the	normal	screen	image;	on	×	T

off time	to	display	the	inverted	or	blank	screen	image;	on	×	T

times
number	of	times	to	blink	the	screen	off;	0	blinks	until	vfd.GU7000_blinkScreen

(false,	false,	1,	1,	1);

Drawing

void	GU7000_drawImage(unsigned	width,	uint8_t	height,	const	uint8_t	*data);

Draw	image	at	the	cursor	from	host	RAM.	

The	cursor	is	not	moved.	

Parameters

width width	of	image;	may	be	less	than	the	width	of	the	image	in	memory

height
height	of	image;	must	be	the	height	of	the	image	in	memory	rounded	down	to	the	
next	8	dots

data image	data;	see	Image	Format

If	height	is	larger	than	

the	screen,	then	the	
call	will	be	ignored.

If	height	or	srcHeight	

is	larger	than	the	
screen,	then	the	call	

will	be	ignored.

If	height	or	srcHeight	

is	larger	than	the	
screen,	then	the	call	

will	be	ignored.
This	command	is	only	

available	on	

Generation	B.

void	GU7000_drawImage_p(unsigned	width,	uint8_t	height,	const	uint8_t	

*data);

Draw	image	at	the	cursor	from	host	ROM.	

The	cursor	is	not	moved.	

Parameters

width width	of	image;	may	be	less	than	the	width	of	the	image	in	memory

height
height	of	image;	must	be	the	height	of	the	image	in	memory	rounded	down	to	the	
next	8	dots

data image	data;	see	Image	Format

void	GU7000_drawFROMImage(unsigned	long	address,	uint8_t	srcHeight,	

unsigned	width,	uint8_t	height);

Draw	image	at	the	cursor	from	the	module's	Flash	image	memory	area	

(FROM).	

The	source	image	starts	from	(offsetx,	offsety)	with	the	origin	at	the	byte	

specified	by	address.	

Only	GU­79**	modules	have	the	Flash	ROM	image	memory	area.	

Parameters

address address	in	the	memory	area

srcHeight height	of	image	in	memory	memory	rounded	down	to	the	next	8	dots

width width	of	image;	may	be	less	than	the	width	of	the	image	in	memory

height height	of	image;	may	be	less	than	the	height	of	the	image	in	memory

void	GU7000_drawImage(unsigned	x,	uint8_t	y,	ImageMemoryArea	area,	

unsigned	long	address,	uint8_t	srcHeight,	unsigned	width,	uint8_t	height,	

unsigned	offsetx,	unsigned	offsety);

Draw	image	at	(x,	y)	from	the	module's	image	memory	areas.	

The	source	image	starts	from	(offsetx,	offsety)	with	the	origin	at	the	byte	

specified	by	address.	

Parameters

x x	coordinate	of	top­left	corner

y y	coordinate	of	top­left	corner

area area	in	which	the	bitmap	is	stored;	see	ImageMemoryArea

address address	in	the	memory	area

srcHeight height	of	image	in	memory	memory	rounded	down	to	the	next	8	dots

width width	of	image;	may	be	less	than	the	width	of	the	image	in	memory

height height	of	image;	may	be	less	than	the	height	of	the	image	in	memory

offsetx x	coordiante	offset	from	source	address

offsety y	coordiante	offset	from	source	address

If	height	is	larger	than	

the	screen,	then	the	
call	will	be	ignored.

Unlike	other	functions,	
this	rounds	height	up	

since	images	with	

heights	not	divisible	
by	8	may	be	drawn.

This	command	is	only	
available	on	

Generation	B.

If	height	is	larger	than	
the	screen,	then	the	

call	will	be	ignored.
This	command	is	only	

available	on	
Generation	B.

If	height	is	larger	than	
the	screen,	then	the	

call	will	be	ignored.
This	command	is	only	

available	on	
Generation	B.

void	GU7000_drawImage(unsigned	x,	uint8_t	y,	ImageMemoryArea	area,	

unsigned	long	address,	unsigned	width,	uint8_t	height);

Draw	image	at	(x,	y)	from	the	module's	image	memory	areas.	

The	source	image	starts	from	the	byte	specified	by	address.	

Parameters

x x	coordinate	of	top­left	corner

y y	coordinate	of	top­left	corner

area area	in	which	the	bitmap	is	stored;	see	ImageMemoryArea

address address	in	the	memory	area

width width	of	image;	may	be	less	than	the	width	of	the	image	in	memory

height height	of	image	rounded	up to	the	next	8	dots

void	GU7000_drawImage_p(unsigned	x,	uint8_t	y,	unsigned	width,	uint8_t	

height,	const	uint8_t	*data);

Draw	image	at	(x,	y)	from	host	RAM.	

Parameters

width width	of	image;	may	be	less	than	the	width	of	the	image	in	memory

height
height	of	image;	must	be	the	height	of	the	image	in	memory	rounded	down	to	the	

next	8	dots

data image	data;	see	Image	Format

void	GU7000_drawImage(unsigned	x,	uint8_t	y,	unsigned	width,	uint8_t	

height,	const	uint8_t	*data);

Draw	image	at	(x,	y)	from	host	ROM.	

Parameters

width width	of	image;	may	be	less	than	the	width	of	the	image	in	memory

height
height	of	image;	must	be	the	height	of	the	image	in	memory	rounded	down	to	the	

next	8	dots

data image	data;	see	Image	Format

void	GU7000_fillRect(unsigned	x0,	unsigned	y0,	unsigned	x1,	unsigned	y1,	

bool	on);

Draw	a	filled	rectangle	from	(x0,y0)­(x1,y1).	

Parameters

x0 x	coordinate	of	the	top­left	corner

y0 y	coordinate	of	the	top­left	corner

x1 x	coordinate	of	the	bottom­right	corner

y1 y	coordinate	of	the	bottom­right	corner

on
true	lights	the	rectangle;	
false	turns	the	dots	of	the	rectangle	off

Window	and	Screen

void	GU7000_selectWindow(uint8_t	window);

Select	the	base	window	or	one	of	the	user­defined	windows.	

Parameters

window 0	selects	the	base	window	1	≤	window	≤	user­defined	window

void	GU7000_defineWindow(uint8_t	window,	unsigned	x,	unsigned	y,	

unsigned	width,	unsigned	height);

Define	or	redefine	a	window	from	(x,y)	to	(x+width,	y+height).	

Parameters

window 1	≤	window	≤	user­defined	window

x x	coordinate	of	upper­left	corner

y x	coordinate	of	upper­left	corner

width width	of	the	window;	may	not	be	past	the	edge	of	the	visible	screen

height height	of	the	window;	may	not	be	past	the	edge	of	the	visisble	screen

void	GU7000_deleteWindow(uint8_t	window);

Delete	a	user­defined	window.	

The	command	is	ignored	if	the	user­defined	window	is	not	defined.	

Parameters

window 1	≤	window	≤	user­defined	window

void	GU7000_joinScreens();

Treat	the	display	memory	as	one	screen.	

Text	scrolls	and	wraps	when	the	cursor	reaches	the	right	end	of	the	hidden	

memory	area.	

void	GU7000_separateScreens();

Treat	the	display	memory	as	two	separate	screens:	visible	screen	area	and	

hidden	memory	area.	

LED	Backlight	Control

void	GU7000_setBacklightColor(uint8_t	r,	uint8_t	g,	uint8_t	b);

Set	the	color	of	the	LED	backlight.	

Parameters

r red	component	(16	shades);	0	≤	r	≤	255

g green	component	(16	shades);	0	≤	g	≤	255

b blue	component	(16	shades);	0	≤	b	≤	255

void	GU7000_setBacklightColor(unsigned	rgb);

Set	the	color	of	the	LED	backlight.	

Parameters

rgb R8G8B8	color;	each	component	has	16	shades

