
Noritake	itron	GU­U100	Code	Library

Document	Number: E­M­0110­00

Issue	Date: 05/18/2012

Noritake	Co.,	Inc.

Electronics	Division	Headquarter

2635	Clearbrook	Drive

Arlington	Heights,	IL	60005

Toll	free:	(800)	779	­ 5846

Phone:	(847)	439	­ 9020

support.ele@noritake.com

www.noritake­elec.com

East	Coast

New	Jersey	Branch

15­22	Fair	Lawn	Ave.

Fair	Lawn,	NJ	07410

Toll	free:	(888)	296	­ 3423

Phone:	(201)	475	­ 5200

Fax:	(201)	796	­ 2269	

Midwest,	Canada,	and	Mexico

Chicago	Branch

2635	Clearbrook	Dr.

Arlington	Heights,	IL	60005

Toll	free:	(800)	779	­ 5846

Phone:	(847)	439	­ 9020

Fax:	(847)	593	­ 2285	

West	Coast

Los	Angeles	Branch

21081	S.	Western	Ave.	Ste	180

Torrance,	CA	90501

Toll	free:	(888)	795	­ 3423

Phone:	(310)	320	­ 1700

Fax:	(310)	320	­ 2900	

You	must	agree	this	terms	and	conditions.	This	software	is	provided	by	Noritake	Co.,	Inc	"AS	IS"	and	any	express	or	implied	warranties,	including,	but	

not	limited	to,	the	implied	warranties	of	merchantability	and	fitness	for	a	particular	purpose	are	disclaimed.	In	no	event	shall	the	copyright	owner	or	

contributors	be	liable	for	any	direct,	indirect,	incidental,	special,	exemplary,	or	consequential	damages	(including,	but	not	limited	to,	procurement	of	

substitute	goods	or	services;	loss	of	use,	data,	or	profits;	or	business	interruption)	however	caused	and	on	any	theory	of	liability,	whether	in	contract,	

strict	liability,	or	sort	(including	negligence	or	otherwise)	arising	in	any	way	out	of	the	use	of	this	software,	even	if	advised	of	the	possibility	of	such	

damage.	

If	this	document	is	distributed	with	software	that	includes	an	end	user	agreement,	this	document,	as	well	as	the	software	described	in	it,	is	furnished	

under	license	and	may	be	used	or	copied	only	in	accordance	with	the	terms	of	such	license.	Except	as	permitted	by	any	such	license,	no	part	of	this	

document	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any	means,	electronic,	mechanical,	recording,	or	

otherwise,	without	the	prior	written	permission	of	Noritake	Co.,	Inc.	Please	note	that	the	content	in	this	document	is	protected	under	copyright	law	

even	if	it	is	not	distributed	with	software	that	includes	an	end	user	license	agreement.	

The	content	of	this	document	is	furnished	for	informational	use	only,	is	subject	to	change	without	notice,	and	should	not	be	construed	as	a	

commitment	by	Noritake	Co.,	Inc.	Noritake	Co.,	Inc.	assumes	no	responsibility	or	liability	for	any	errors	or	inaccuracies	that	may	appear	in	the	

informational	content	contained	in	this	document.	

Any	references	to	company	names	in	sample	codes	are	for	demonstration	purposes	only	and	are	not	intended	to	refer	to	any	actual	organization.	

Noritake	and	Itron	are	either	registered	trademarks	or	trademarks	of	Noritake	Co.,	Inc.	in	the	United	States	and/or	other	countries.	

©	2012	Noritake	Co.,	Inc.	All	rights	reserved	

Noritake	Co.,	Inc.,	2635	Clearbrook	Drive,	Arlington	Heights,	IL	60005,	USA.

Contents

About

Replacing	LCDs

Hardware	Operation

Display	Segment	Driver	Chips

Memory	Layout

Reading	and	Writing

Library	Setup

Installation

Configuration

Parallel

Serial	Interface	Type	1:	CU­UW

Serial	Interface	Type	2:	SPI

Serial	Interface	Type	3:	Signal	Separate

Method	Reference

Convenience	Methods

uint8_t	align(uint8_t	y);

uint8_t	clip(uint8_t	y);

uint8_t	fontAdvance();

Primitives

void	init();

void	reset();

void	command(uint8_t	bits,	bool	chip);

void	setCursor(uint8_t	x,	uint8_t	y);

void	writeData(uint8_t	data);

uint8_t	readData();

uint8_t	peek(uint8_t	x,	uint8_t	y);

uint8_t	readStatus(bool	chip);

void	setScreenBrightness(uint8_t	percent);

void	displayOff(bool	powerSave);

void	displayOn();

Character­Based	Movements

void	back();

void	carriageReturn();

void	crlf();

void	forward();

void	home();

void	lineFeed();

Printing

void	setFont(const	uint8_t	*data,	uint8_t	width,	uint8_t	height);

Printing	Characters	and	Strings

void	print(char	c);

void	print(const	char	*buffer,	size_t	size);

void	print(const	char	*str);

void	print_p(const	char	*buffer,	size_t	size);

void	print_p(const	char	*str);

void	println(char	c);

void	println(const	char	*buffer,	size_t	size);

void	println(const	char	*str);

void	println_p(const	char	*buffer,	size_t	size);

void	println_p(const	char	*str);

Printing	Numbers

bool	numberString(char	buf[10],	unsigned	long	number,	uint8_t	

max,	char	fill);

bool	print(int	number,	uint8_t	max,	char	fill);

bool	print(long	number,	uint8_t	max,	char	fill);

bool	print(unsigned	long	number,	uint8_t	max,	char	fill);

bool	print(unsigned	number,	uint8_t	max,	char	fill);

Graphics

void	clearScreen();

Inverting	Colors

void	invertOn()

void	invertOff();

void	setDot(uint8_t	x,	uint8_t	y,	bool	on);

void	drawCircle(uint8_t	cx,	uint8_t	cy,	uint8_t	radius,	bool	on);

Drawing	Images

void	drawImage(const	uint8_t	*data,	uint8_t	x,	uint8_t	y,	uint8_t	

width,	uint8_t	height,	uint8_t	whole_width);

void	drawImage(const	uint8_t	*data,	uint8_t	x,	uint8_t	y,	uint8_t	

width,	uint8_t	height);

void	drawLine(uint8_t	x1,	uint8_t	y1,	uint8_t	x2,	uint8_t	y2,	bool	on);

void	 drawRect(uint8_t	 x1,	 uint8_t	 y1,	 uint8_t	 width,	 uint8_t	 height,	

bool	on);

void	 fillRect(uint8_t	x1,	uint8_t	y1,	uint8_t	width,	uint8_t	height,	bool	

on);

About

The	GU­U100 is	a	graphic	vacuum	fluorescent	display	module	meant	to	replace	graphic	

LCDs	based	on	the	KS0108	chipset.	

On	top	of	supporting	all	of	the	common	KS0108	commands,	GU­U100	adds	the	unique	

features	of	screen	brightness	and	power	save	mode.	

Replacing	LCDs

Code	written	for	KS0108	can	be	used	to	control	the	GU­U100.	

Depending	on	the	LCD	being	replaced,	slight	modifications	may	be	necessary.	

The	direction	of	chip	select	(CS) or	slave	select	(SS) may	be	different.	The	GU­U100's	

parallel	interface	chip	select	is	active	high,	meaning	the	device	accepts	commands	only	

when	 CS	 is	 1.	 Some	 LCDs	 expect	 chip	 select	 to	 be	 active	 low,	 meaning	 the	 device	 is	

active	only	when	CS	is	0.	

The	number	of	display	segment	driver	chips	may	be	different.	 If	 the	code	was	written	

for	 more	 chips	 than	 is	 available	 on	 the	 GU­U100,	 only	 the	 left­most	 portions	 of	 the	

expected	screen	image	will	be	visible.	

The	address	and	bit	

value	are	calculated:	

page = y/8

bit = 1 << y%8

addr = page*64 + x

Hardware	Operation

Display	Segment	Driver	Chips

This	 document	 assumes	 the	 device	 is	 oriented	 so	 that	 the	 longer	 dimension	 is	

horizontal	since	this	is	the	most	common	use.	The	module	specification	is	written	

from	the	opposite	perspective	(the	longer	dimension	is	vertical).	

The	 display	 is	 divided	 into	 64×64­dot	 segments	 arranged	 horizontally.	 Each	 of	

these	segments	is	controlled	by	a	separate	chip.	GU128x64E­U100	has	two	chips.	

These	 chips	 do	 not	 communicate	 information	 such	 as	 the	 display	 memory	 or	

current	 x	 and	 y	 position.	 These	 must	 be	 set	 specifically	 for	 each	 chip.	 However,	

screen	brightness	and	power	save	mode	affect	the	whole	module	and	are	shared.	

To	access	the	left	side	of	the	screen,	you	must	send	commands	to	the	first	chip.	The	

right	 side	 of	 the	 screen	 is	 accessed	 with	 the	 second	 chip.	 Both	 chips	 cannot	 be	

accessed	simultaneously.	

Memory	Layout

Each	controller	has	a	64×64­dot	memory	buffer	representing	half	of	the	image	on	

the	screen.	

• Each	dot	is	represented	by	one	bit	in	memory	

• Memory	is	accessed	by	bytes	(8	bits)	

• Each	byte	represents	8	vertical	dots	

• Bytes	are	laid	out	horizontally	

• Each	page	(64	bytes)	represents	one	row:	64×8	dots	

• The	next	page	(starting	from	byte	64)	represents	the	next	vertical	8	dots	

Reading	and	Writing

Each	chip	keeps	track	of	the	current	X	and	Y	values	(called	the	cursor).	

After	every	memory	read	or	write	is	executed,	the	X	counter	increments.	After	X	is	

63,	the	counter	wraps	back	around	to	0.	The	Y	counter	is	not	changed.	

The	library	increments	and	wraps	the	value	of	Y	after	wrapping	in	the	X	direction.	

Consult	the	module	

specification	for	

setting	the	jumpers	to	

select	the	interface.	

#define DATA_PORT PORTD
#define RS_PIN 0

#define RS_PORT PORTA
#define RW_PIN 1
#define RW_PORT PORTA

#define E_PIN 2
#define E_PORT PORTA

#define CS1_PIN 3
#define CS1_PORT PORTA

#define CS2_PIN 4
#define CS2_PORT PORTA
#define RESET_PIN 5

#define RESET_PORT PORTA

Library	Setup

Installation

This	library	is	written	for	Atmel	AVR	microcontrollers.	

Demo	projects	use	AVR	Studio	4.	

1. Download	the	code	library.	

2. Unzip	the	library	file	to	your	work	area.	

3. Extract	the	demo	folder	into	the	folder	for	the	GU­U100	code	library.	

4. Set	 the	 configuration	options	 in	config.h included	with	the	 code	 library.	 See	

the	Configuration section.	

5. Open	the	Demo.aps project	file	with	AVR	Studio	4.	

Configuration

The	library	is	configured	by	setting	preprocessor	values	in	the	config.h file	in	the	src

directory	of	the	library.	

GU­U100	 offers	 parallel	 and	 serial	 interfaces.	 The	 interface	 is	 controlled	 by	

NORITAKE_INTERFACE.	

• 0	selects	parallel	(module	default)	

• 1	selects	one	of	the	serial	interfaces.	

NORITAKE_SERIALmust	be	set	to	the	correct	serial	interface	type:	

◦ 1 ­ Type	1:	CU­UW

◦ 2 ­ Type	2:	SPI

◦ 3 ­ Type	3:	Signal	Separate

The	library	must	be	told	which	pins	connect	the	host	to	the	module.	Each	signal	has	

a	preprocessor	variable	ending	with	_PORT and	_PIN.	

E.g.	for	the	chip	select	1	pin:	

#define CS1_PIN 3
#define CS1_PORT PORTA

Parallel

Parallel	is	the	fastest	interface	but	uses	the	most	pins.	Each	signal	is	controlled	

by	a	separate	pin.	

Code	 that	 was	 written	 for	 LCDs	 will	 use	 the	 parallel	 interface.	 Minor	

modifications	may	be	necessary	as	discussed	in	the	Replacing	LCDs section.	

• DATA ­ data	bits	0	­ 7	(must	be	on	pins	0	­ 7	of	given	port)	

• RS ­ command	(0)	/	data	(1)	signal	

• RW ­ write	(0)	/	read	(1)	signal	

• E ­ enable	signal	

• CS1 ­ chip	select	1	(left	side)	

• CS2 ­ chip	select	2	(right	side)	

• RST ­ reset	module,	active	low	

#define SIO_PIN 4
#define SIO_PORT PORTG

#define CS_PIN 7
#define CS_PORT PORTB
#define SCK_PIN 3

#define SCK_PORT PORTG
#define RESET_PIN 0

#define RESET_PORT PORTA

#define SO_PIN 4

#define SO_PORT PORTG
#define SCK_PIN 3

#define SCK_PORT PORTG
#define RESET_PIN 0
#define RESET_PORT PORTA

#define CS2_PIN 1
#define CS2_PORT PORTA

#define CS1_PIN 2
#define CS1_PORT PORTA

#define SI_PIN 3
#define SI_PORT PORTA

#define RS_PIN 7

#define RS_PORT PORTB
#define SCK_PIN 3

#define SCK_PORT PORTG
#define RESET_PIN 0
#define RESET_PORT PORTA

#define CS2_PIN 1
#define CS2_PORT PORTA

#define CS1_PIN 2
#define CS1_PORT PORTA

#define SI_PIN 3
#define SI_PORT PORTA

Serial	Interface	Type	1:	CU-UW

This	interface	uses	the	minimum	number	of	pins,	but	requires	up	to	two	bytes	

to	be	sent	per	data	item	or	command.	Data	is	input	and	output	over	the	same	

line.	

SI/SO,	CS,	SCK,	and	RST lines	are	used.	

The	CS (chip	select)	here	 is	 for	the	entire	module.	 It	 is	not	 the	same	as	CS1 or	

CS2.	

A	status	byte	must	be	sent	when	CS is	lowered.	This	status	byte	sets	the	state	of	

CS1,	CS2,	RW,	and	RS.	Commands	and	data	may	be	sent	continuously	without	re­

sending	 this	 status	byte	until	CS is	 raised	or	 the	 status	of	CS1,	CS2,	RW,	or	RS	

needs	to	change.	After	this,	commands	and	data	bytes	are	sent	or	received.	

• SIO ­ I/O	pin	

• CS ­ module	chip	select	(not	to	be	confused	with	CS1 and	CS2)	

• SCK ­ synchronous	serial	clock	

• RST ­ reset	module,	active	low	

Serial	Interface	Type	2:	SPI

This	interface	allows	you	to	use	the	module	on	an	SPI	bus	as	two	slave	devices	

selected	by	CS1 and	CS2.	Data	is	sent	to	the	module	on	a	separate	line	from	data	

received	from	the	module.	

SO,	SCK,	RST,	CS1,	CS2,	and	SI	lines	are	used.	

A	status	byte	similar	to	the	Type	1	interface	must	be	sent	to	change	RW	and	RS.	

• SO ­ output	(data/status)	sent	from	the	module	to	the	host	

• SCK ­ synchronous	serial	clock	

• RST ­ reset	module,	active	low	

• CS1 ­ chip	select	1	(left	side),	active	low	

• CS2 ­ chip	select	2	(right	side),	active	low	

• SI ­ input	(data/commands)	sent	to	the	module	from	the	host	

Serial	Interface	Type	3:	Signal	Separate

This	has	the	potential	to	be	the	fastest	serial	interface	since	no	status	byte	ever	

need	be	sent.	

Since	 there	 is	 no	 pin	 to	 output	 from	 the	 module,	 many	 methods	 may	 be	

restricted	in	use	since	they	rely	on	reading	the	display	memory.	

This	 interface	 is	 primarily	 useful	 for	 simple	 or	 pre­rendered	 high­speed	

animation	with	fewer	pins	than	the	parallel	interface.	

RS,	SCK,	RST,	CS1,	CS2,	and	SI	lines	are	used.	

• RS ­ command	(0)	/	data	(1)	signal	

• SCK ­ synchronous	serial	clock	

• RST ­ reset	module,	active	low	

• CS1 ­ chip	select	1	(left	side),	active	high	

• CS2 ­ chip	select	2	(left	side),	active	high	

• SI ­ input	(data/commands)	sent	to	the	module	from	the	host	

Method	Reference

Convenience	Methods

uint8_t	align(uint8_t	y);	

Align	a	y	value	to	the	next	highest	8­vertical­dot	block	(i.e.	values	that	are	not	

divisible	by	8	are	rounded	up).	

y y	value	to	align

Returns: Aligned	y	value.	

uint8_t	clip(uint8_t	y);	

Align	 a	 y	 value	 to	 the	 previous	 8­vertical­dot	 block	 (i.e.	 values	 that	 are	 not	

divisible	by	8	are	rounded	down).	

y y	value	to	clip

Returns: Clipped	y	value.	

uint8_t	fontAdvance();	

Get	 the	 font	 width	 including	 the	 gutter	 space.	 The	 cursor	 will	 be	 moved	

horizontally	by	this	amount	when	working	with	text­based	methods.	

Returns:	Advance	width	of	the	font:	fontWidth + fontGutter

Primitives

void	init();	

Initialize	the	module.	

This	must	be	called	after	reset().	

Module	State:	

• x	=	0	

• y	=	0	

• display	=	on	

• power	save	mode	=	off	

• brightness	=	100%	

• font	=	NULL	

• fontWidth	=	0	

• fontHeight	=	0	

• fontGutter	=	1	

void	reset();	

Reset	the	module.	

Use	caution	when	

sending	commands.	

If	the	cursor	is	already	

at	the	given	position,	

no	command	is	sent	to	

the	module.	

Serial	interface	type	3	

always	returns	0.	

After	a	reset,	call	init() before	any	other	method.	

void	command(uint8_t	bits,	bool	chip);	

Send	a	command	to	the	module.	The	command's	bit	patterns	are	detailed	in	the	

module's	specification.	

The	 library	 does	 not	 attempt	 to	 understand	 commands.	 If	 a	 setting	 on	 the	

module	 is	changed,	the	member	variables	of	 the	library	should	be	updated	to	

reflect	those	changes.	

bits command	to	send

chip chip	to	send	the	command	to

void	setCursor(uint8_t	x,	uint8_t	y);	

Set	the	cursor	to	(x,	y).	

If	(x,	y)	is	beyond	the	limits	of	the	screen,	the	request	is	ignored.	

The	cursor	in	the	module	only	accepts	y	values	aligned	to	8­vertical­dot	blocks.	

If	 the	 y	 is	 not	 divisible	 by	 8,	 it	 is	 rounded	 down	 and	 the	 when	 used	 with	

writedata() and	readData().	

Other	methods	compensate	for	the	misalignment.	

x x	coordinate:	0	≤	x	<	128	

y y	coordinate:	0	≤	y	<	64	

void	writeData(uint8_t	data);	

Write	 to	 the	 display	 memory	 at	 the	 cursor	 position.	 If	 the	 cursor	 y	 was	 not	

divisible	by	8,	then	it	is	rounded	down	to	the	previous	8­vertical­dot	block	and	

all	8	vertical	dots	will	be	overwritten.	

This	increments	the	x	counter	and	causes	wrapping.	If	x	was	127,	then	x	will	be	

0	and	y	will	be	y+8.	If	y	is	greater	than	64,	y	wraps	to	0.	

data data	to	write	to	the	display	memory

uint8_t	readData();	

Read	from	the	display	memory	at	the	cursor	position.	If	 the	cursor	y	was	not	

divisible	by	8,	then	it	is	rounded	down	to	the	previous	8­vertical­dot	block	and	

all	8	vertical	dots	will	be	read.	

This	increments	the	x	counter	and	causes	wrapping.	If	x	was	127,	then	x	will	be	

0	and	y	will	be	y+8.	If	y	is	greater	than	64,	y	wraps	to	0.	

Returns: Data	read	from	the	display	memory.	

Serial	interface	type	3	

always	returns	0.	

Serial	interface	type	3	

always	returns	0.	

This	will	bring	the	

module	out	of	power	

save	mode.	

Power	save	mode	

consumes	less	power	

than	both	turning	all	
dots	off	and	turning	

the	display	off	but	

requires	more	time	to	

turn	back	on.	

See	fontAdvance().	

uint8_t	peek(uint8_t	x,	uint8_t	y);	

Read	from	the	display	memory	at	the	given	position.	setCursor(x, y) is	called	

before	and	after	readData().	

Returns: The	data	read	from	the	display	memory	at	the	given	position.	

uint8_t	readStatus(bool	chip);	

Read	the	status	of	the	chip.	

Returns: Chip	status	as	a	combination	of:	

• 0x80	­ Busy	

• 0x20	­ Chip	Off	

• 0x10	­ Resetting	

void	setScreenBrightness(uint8_t	percent);	

Set	screen	brightness.	

percent

brightness	value:	13%	≤	percent	<	100%.	

Percentages	are	rounded	up	to	the	next	selectable	value:	

• 100%	

• 87.5%	

• 75%	

• 62.5%	

• 50%	

• 37.5%	

• 25%	

• 12.5%	

void	displayOff(bool	powerSave);	

Turn	the	display	off.	

powerSave true enables	power	save	mode;	false disables	power	save	mode

void	displayOn();	

Turn	 the	 display	on	 after	 it	 has	 been	 turned	off.	 This	will	 also	disable	power	

save	mode.	

Character­Based	Movements

void	back();	

Move	the	cursor	back	by	one	character	width	in	the	current	font.	If	the	cursor	

is	within	one	character	width	of	the	start	of	a	line,	the	cursor	moves	to	the	end	

See	fontAdvance().	

See	the	drawImage().	

of	the	previous	line.	If	the	cursor	was	within	one	character	width	of	(0,	0),	it	is	

moved	to	(0,	0).	

This	can	also	be	used	by	printing	'\b'.	

void	carriageReturn();	

Move	the	cursor	to	the	beginning	of	the	current	line.	

This	can	also	be	used	by	printing	'\r'.	

void	crlf();	

Move	the	cursor	to	the	beginning	of	 the	next	 line	as	though	carriageReturn()

and	lineFeed() were	called.	

This	can	also	be	used	by	printing	"\r\n".	

void	forward();	

Move	 the	 cursor	 forward	 by	 one	 character	 width	 in	 the	 current	 font.	 If	 the	

cursor	is	within	one	character	width	of	the	right	edge	of	the	screen,	the	cursor	

is	 moved	 to	 the	 beginning	 of	 the	 next	 line.	 If	 the	 cursor	 is	 at	 the	 end	 of	 the	

display,	the	cursor	is	moved	to	(0,	0).	

This	can	also	be	used	by	printing	'\t'.	

void	home();	

Move	the	cursor	to	(0,	0).	

This	can	also	be	used	by	printing	'\x0b'.	

void	lineFeed();	

Move	the	cursor	to	the	next	line.	If	on	the	last	line	of	the	display,	the	cursor	is	

moved	to	(0,	0).	

This	can	also	be	used	by	printing	'\n'.	

Printing

void	setFont(const	uint8_t	*data,	uint8_t	width,	uint8_t	height);	

This	sets	the	current	font,	its	width,	and	its	height.	

Each	 character	 is	 a	 width×height	 bitmap.	 The	 bitmaps	 for	 each	 character	

defined	must	come	one	after	another	(aligned	to	bytes)	in	Flash	ROM	(program	

ROM).	Characters	from	0x20 to	0xff may	be	defined.	

data data	for	characters	in	bitmap	format	in	Flash	ROM	(program	ROM)

width width	of	each	character	not	including	gutter	space

height height	of	each	character

When	used	with	serial	

interface	type	3,	all	8­

vertical­dot	groups	

that	the	character	

touches	will	be	

cleared.	

See	fontAdvance().	

See	Character-Based	

Movements and	

clearScreen().	

Printing	Characters	and	Strings	

There	 are	 many	 variations	 of	 the	 print	 method.	 Variations	 that	 end	 with	 _p

print	from	the	Flash	ROM	(program	ROM)	of	the	host.	Variations	that	end	with	

ln print	and	then	go	to	the	next	line	as	if	carriageReturn() and	lineFeed() had	

been	called.	

The	 background	 the	 size	 of	 fontAdvance()×fontHeight	 is	 cleared	 before	

drawing	the	character.	The	bottom	dots	of	the	bottom	group	of	8	vertical	dots	

are	preserved	if	the	font	height	is	not	a	multiple	of	8.	E.g.	if	the	font	is	defined	

to	 be	 10	 dots	 high,	 the	 top	 10	 dots	 are	 cleared,	 and	 the	 bottom	 6	 are	 left	

untouched.	

When	the	cursor	is	within	one	character	width	of	the	end	of	the	screen,	text	is	

wrapped	to	the	next	line	as	though	crlf() was	called.	

Characters	below	0x20 are	control	characters.	Any	control	character	that	is	not	

defined	is	ignored.	

void print(char c);

void print(const char *buffer, size_t size);

void print(const char *str);

void print_p(const char *buffer, size_t size);

void print_p(const char *str);

void println(char c);

void println(const char *buffer, size_t size);

void println(const char *str);

void println_p(const char *buffer, size_t size);

void println_p(const char *str);

Printing	Numbers	

Print	a	number	max characters	long.	

The	fill character	is	inserted	on	the	left	if	the	number	has	less	than	max digits.	

• ' ' (Space)	right­aligns	

• '0' prefixes	the	number	with	zeroes	

• 0 prints	only	the	necessary	digits	

bool numberString(char buf[10], unsigned long number, uint8_t max, char

fill);

bool print(int number, uint8_t max, char fill);

bool print(long number, uint8_t max, char fill);

bool print(unsigned long number, uint8_t max, char fill);

bool print(unsigned number, uint8_t max, char fill);

Returns:	false	and	does	not	print	any	characters	if:	

• max is	>	10	

• number requires	more	than	max digits	

Graphics

This	should	not	be	

used	from	serial	

interface	type	3.	

Setting	multiple	dots	

in	the	same	8­vertical­
dot	group	will	

overwrite	existing	

dots.	

This	should	not	be	
used	from	serial	

interface	type	3.	

Memory	is	laid	out	as	

in	Memory	Layout in	

Hardware	Operation;	

however,	bitmaps	are	

not	limited	to	64×64­

dot	blocks.	

When	used	with	serial	

interface	type	3,	all	8­
vertical­dot	groups	

that	the	images	

void	clearScreen();	

Clear	the	screen	and	move	the	cursor	to	(0,	0).	

This	can	also	be	used	by	printing	'\x0c'.	

Inverting	Colors

void invertOn()

void invertOff();

Invert	the	colors	of	drawing	methods.	

Only	 dots	 written	 after	 this	 call	 are	 affected.	 The	 existing	 screen	 image	 does	

not	change.	

void	setDot(uint8_t	x,	uint8_t	y,	bool	on);	

Set	the	dot	at	(x,	y).	

If	(x,	y)	is	beyond	the	limits	of	the	screen,	the	request	is	ignored.	

x x	coordinate:	0	≤	x	<	128	

y y	coordinate:	0	≤	y	<	64	

void	drawCircle(uint8_t	cx,	uint8_t	cy,	uint8_t	radius,	bool	on);	

Draw	a	circle	centered	at	(cx,	cy)	with	the	given	radius.	

Dots	beyond	the	limits	of	the	screen	are	ignored.	

cx x	coordinate:	0	≤	cx	<	128	

cy y	coordinate:	0	≤	cy	<	64	

radius

radius	of	the	circle:

0	≤	cx­radius	<	128
0	≤	cx+radius	<	128

0	≤	cy­radius	<	64

0	≤	cy+radius	<	64	

on true lights	dots;	false turns	dots	of	the	circle	off

Drawing	Images

Draw	 an	 image	 from	 (x,	 y)	 to	 (x+width,	 y+height).	 data is	 a	 pointer	 to	 Flash	

ROM	(program	ROM)	image	data.	The	width must	be	 less	than	or	equal	to	the	

image	 width	 in	 memory,	 whole_width.	 The	 height	 may	 be	 less	 than	 the	 total	

image	height	in	memory.	

Dots	beyond	the	limits	of	the	screen	are	ignored.	

Dots	in	the	same	8­vertical­dot	group	but	not	inside	the	specified	rectangle	are	

preserved	when	the	image	is	drawn	so	that	its	y	values	are	not	divisible	by	8.	

touches	will	be	

cleared.	

This	should	not	be	

used	from	serial	

interface	type	3.	

This	should	not	be	

used	from	serial	

interface	type	3.	

This	should	not	be	

used	from	serial	

interface	type	3	unless	

the	rectangle	begins	

and	ends	on	vertical	

dots	that	are	divisible	

by	8.	

void drawImage(const uint8_t *data, uint8_t x, uint8_t y, uint8_t width,

uint8_t height, uint8_t whole_width);

void drawImage(const uint8_t *data, uint8_t x, uint8_t y, uint8_t width,

uint8_t height);

data Image	data	in	the	same	format	as	display	memory

x x	coordinate:	0	≤	x	<	128	

y y	coordinate:	0	≤	y	<	64	

width width	to	draw	to	screen:	0	≤	x+width	≤	whole_width	≤	128	

height height	to	draw	to	screen:	0	≤	y+height	≤	64	

whole_width the	width	of	the	bitmap	in	memory

void	drawLine(uint8_t	x1,	uint8_t	y1,	uint8_t	x2,	uint8_t	y2,	bool	on);	

Draw	a	line	from	(x1,	y1)	to	(x2,	y2).	

Dots	beyond	the	limits	of	the	screen	are	ignored.	

x1 start	x	coordinate:	0	≤	x1	<	128	

y1 start	y	coordinate:	0	≤	y1	<	64	

x2 end	x	coordinate:	0	≤	x2	<	128	

y2 end	y	coordinate:	0	≤	y2	<	64	

on true lights	dots;	false turns	dots	of	the	line	off

void	drawRect(uint8_t	x1,	uint8_t	y1,	uint8_t	width,	uint8_t	height,	bool	on);	

Draw	the	outline	of	a	rectangle	from	(x1,	y1)	to	(x2,	y2).	

Dots	beyond	the	limits	of	the	screen	are	ignored.	

x x	coordinate:	0	≤	x	<	128	

y y	coordinate:	0	≤	y	<	64	

width width:	0	≤	x+width	≤	128	

height height:	0	≤	y+height	≤	64	

on true lights	dots;	false turns	dots	of	the	rectangle	off

void	fillRect(uint8_t	x1,	uint8_t	y1,	uint8_t	width,	uint8_t	height,	bool	on);	

Fill	the	rectangle	from	(x1,	y1)	to	(x2,	y2).	

Dots	beyond	the	limits	of	the	screen	are	ignored.	

x x	coordinate:	0	≤	x	<	128	

y y	coordinate:	0	≤	y	<	64	

width width:	0	≤	x+width	<	128	

height height:	0	≤	y+height	<	64	

on true lights	dots;	false turns	dots	of	the	rectangle	off

